مقالات انگلیسی
در حوزه خرس قهوه ای و خرسی سیاه آسیایی
Mehdi Ansari H., Arash Ghoddousi
Abstract: Large carnivores are among the most threatened species in the world because of their natural low densities and need for expansive habitats. The brown bear (Ursus arctos) is the largest carnivore in the southwestern Asia, and faces threats in much of its range from conflict with humans over shared resources and shrinkage of habitat. In this study, we surveyed for brown bear sign and scat during spring–autumn from April 2013 to November 2015 in 24 randomly selected, 25-km2 grid cells, and developed a model of potential brown bear occurrence in one of its globally southernmost distribution ranges in Iran. To better understand its conservation needs and management priorities at the landscape scale, we used a combination of field surveys to develop a Maximum Entropy (Maxent) model. The model was developed using 10 environmental and anthropogenic predictors. Potential brown bear occurrence was strongly influenced by availability of water resources (54.1%) as the most important variable; and distance to roads (16.1%), aspect (7.6%), and vegetation types (5.9%) were the other important factors. The model showed an area of 581 km2 (35%) within the study area has high to good bear-occurrence probability values; 86% of this area is located in 2 patches, each larger than the average bear home range. Identification of these patches may support establishment of a reserve in the area, which would ensure long-term survival of the brown bear and sustainable water use and resource extraction from Pistacia atlantica forests by resident and nomadic communities in the region.
Kamran Almasieh, Mohammad Kaboli, and Paul Beier | Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran 2 School of Forestry, Northern Arizona University, Flagstaff, AZ 86011-5018, USA
The Iranian black bear (Ursus thibetanus gedrosianus; IBB) is a critically endangered subspecies. The IBB needs connectivity to access seasonally available foods and to provide gene flow among populations in the mountains of Kerman, Hormozgan, and Sistan and Baluchistan provinces of Iran. We identified IBB cores to be used as termini for modelled corridors. We mapped 31 habitat cores based on 200 IBB presence points from studies during 2008–2013, and 70 presence points from our own observations of IBB footprints and scats in 2014. We used MaxEnt on 101 spatially independent presence points to map areas of high-quality habitat. The largest population patch (approx. 8,700 km2 ) covered 4 protected areas. We used least-cost modelling to model habitat corridors among 31 habitat cores. We considered a corridor locally important if it helped join nearby cores into a cluster that would support a large demographically and genetically vigorous population. We considered a corridor regionally important if it could connect the clusters united by local corridors. The most important local corridors were the corridors creating 4 clusters in the southeast of Iran. Also, we identified the 2 important regional corridors that could connect the 3 most important clusters. Although the density of roads in all habitat corridors was low (18.51 m/km2 ), roads crossed many important corridors. Conservation of main habitat cores and corridors for the IBB in southeastern Iran should be considered by the Department of Environment in Iran.